Abstract

Harmonic estimation for a signal distorted with additive noise has been an area of interest for researchers in many disciplines of science and engineering. This work presents a new algorithm based on the foraging behavior of E. coli bacteria in our intestine to estimate the harmonic components present in power system voltage/current waveforms. The basic foraging strategy is made adaptive, through a Takagi-Sugeno fuzzy scheme, depending on the operating condition to make the convergence faster. Besides, the harmonic estimation is linear in amplitude and nonlinear in phase. As the proposed algorithm does not rely on Newton-like gradient descent methods, this is used for phase estimation whereas the linear least square scheme estimates the amplitude, thereby presenting the hybrid method. The improvement in %error, as well as the processing time compared with the conventional discrete Fourier transform and genetic algorithm method is demonstrated in this paper. Besides, the performance is quite acceptable even in the presence of decaying dc component as well as to change in amplitude and phase angle of harmonic components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.