Abstract
This article is dedicated to the construction of a robust and accurate numerical scheme based on the lattice Boltzmann method (LBM) for simulations of gaseous detonations. This objective is achieved through careful construction of a fully conservative hybrid lattice Boltzmann scheme tailored for multi-species reactive flows. The core concept is to retain LBM low dissipation properties for acoustic and vortical modes by using the collide and stream algorithm for the particle distribution function, while transporting entropic and species modes via a specifically designed finite-volume scheme. The proposed method is first evaluated on common academic cases, demonstrating its ability to accurately simulate multi-species compressible and reactive flows with discontinuities: the convection of inert species, a Sod shock tube with two ideal gases and a steady one-dimensional inviscid detonation wave. Subsequently, the potential of this novel approach is demonstrated in one- and two-dimensional inviscid unsteady gaseous detonations, highlighting its ability to accurately recover detonation structures and associated instabilities for high activation energies. To the authors' knowledge, this study is the first successful simulation of detonation cellular structures capitalizing on the LBM collide and stream algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.