Abstract

AbstractA hybrid integral equation finite volume scheme has been developed for the calculation of transonic potential flow about complex configurations. A new technique has been used for evaluating the potential values in the field cells intersecting the body surface panels. These potential values then serve as Dirichlet boundary conditions for computing the potentials in the field by a finite volume Successive Line Over Relaxation (SLOR) scheme. In this approach there is no need to evaluate the potentials anywhere in the field by direct application of Green's third identity, thus significantly reducing computer processing time and storage requirement, while improving accuracy of surface pressure prediction and shock capture, as results indicate. The capability of tackling additional complex geometry with ease, the primary advantage of the integral equation approach, is demonstrated by using the same field grid for wing-alone and wing-body combination cases, while maintaining the solution accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.