Abstract

In this study, an inexact stochastic fuzzy programming (ISFP) model is proposed for land-use allocation (LUA) and environmental/ecological planning at a watershed level, where uncertainties associated with land-use parameters, benefit functions, and environmental/ecological requirements are described as discrete intervals, probabilities and fuzzy sets. In this model, an interval stochastic fuzzy programming model is used to support quantitative optimization under uncertainty. Complexities in land-use planning systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The proposed method is applied to planning land use/ecological balance in Poyang Lake watershed, China. The objective of the ISFP is maximizing net benefit from the LUA system and the constraints including economic constraints, social constraints, land suitability constraints, environmental constraints, ecological constraints and technical constraints. Modeling results indicate that the desired system benefit will be between [15.17, 18.29] × 1012 yuan under the minimum violating probabilities; the optimized areas of commercial land, industrial land, agricultural land, transportation land, residential land, water land, green land, landfill land and unused land will be optimized cultivated land, forest land, grass land, water land, urban land, unused land and landfill will be [228234, 237844] ha, [47228, 58451] ha, [20982, 23718] ha, [33897, 35280] ha, [15215, 15907] ha, [528, 879] ha and [1023, 1260] ha. These data can be used for generating decision alternatives under different scenarios and thus help decision makers identify desired policies under various system-reliability constraints of ecological requirement and environmental capacity. Tradeoffs between system benefits and constraint-violation risks can be tackled. They are helpful for supporting (a) decision of land-use allocation and government investment; (b) formulation of local policies regarding ecological protection, environment protection and economic development; (c) analysis of interactions among economic benefits, system reliability and ecological requirements.

Highlights

  • Land-use allocation (LUA) in a watershed has attracted much attention from the scientific community, as there are some particular characteristics of a watershed [1]

  • The results indicate that the variations of funding, resources, ecological and waste generation conditions may lead to the varied LUA patterns

  • An inexact stochastic fuzzy programming (ISFP) model is proposed for land-use allocation and environmental/ecological planning at a watershed level

Read more

Summary

Introduction

Land-use allocation (LUA) in a watershed has attracted much attention from the scientific community, as there are some particular characteristics of a watershed [1]. Various models have been proposed to support LUA [3,4,5,6,7,8,9,10,11,12]. These models can be divided into three categories: mathematical models, intelligent models, and GIS-based spatial models. Carsjens and van der Knaap (2002) used GIS technology to deal with strategic spatial land-use allocation [13]. Sharawi (2006) proposed a cost–benefit analysis method which based a Little–Mirrlees–Squire–van der Tak (LMST) approach for LUA in Sudan [14].

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call