Abstract

AbstractThis paper introduces a hybrid inductor‐current sensor with fast response and high accuracy using online calibration for 25 MHz BUCK DC‐DC converter. The proposed inductor‐current sensor combines the high accuracy of the senseFET sensing method with the lossless and real‐time response characteristics of the RC filter technique. Comparing to exist techniques, the proposed calibration scheme can make filter coefficient converge even in unsteady state, which improve its effectiveness in practical application. Moreover, the proposed inductor‐current sensor utilizes sample‐based senseFET‐based current sensing to offer calibration reference, which avoid the use of high bandwidth amplifier. Digital current balance control is seamlessly integrated into the 25 MHz 2‐phase digital adaptive time‐controlled (AOT) BUCK DC‐DC converter through the utilization of the proposed hybrid inductor‐current sensor. The 2‐phase BUCK DC‐DC converter is implemented in a standard 0.18‐µm CMOS process. After online calibration, proposed hybrid inductor‐current sensor outputs a full‐wave waveform with high accuracy and low propagation delay of only 9 ns in post‐layout simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.