Abstract

A high order discretization strategy for solving hyperbolic initial–boundary value problems on hybrid structured–unstructured grids is proposed. The method leverages the capabilities of two distinct families of polynomial elements: discontinuous Galerkin discretizations which can be applied on elements of arbitrary shape, and Hermite discretizations which allow highly efficient implementations on staircased Cartesian grids. We demonstrate through numerical experiments in 1+1 and 2+1 dimensions that the hybridized method is stable and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.