Abstract
Group search optimizer (GSO) is a recently developed heuristic inspired by biological group search resources behavior. However, it still has some defects such as slow convergence speed and poor accuracy of solution. In order to improve the performance of GSO in solving complex optimization problems, an opposition-based learning approach (OBL) and a differential evolution method (DE) are integrated into GSO to form a hybrid GSO. In this paper, the strategy of OBL is used to enlarge the search region, and the operator of DE is utilized to enhance local search to improve. Comparison experiments have demonstrated that our hybrid GSO algorithm performed advantages over previous GSO and DE approaches in convergence speed and accuracy of solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.