Abstract
AbstractIn this two‐part paper, we present a new nonlinear method for the assimilation of Lagrangian data. In part I, we formulate the method as a generalization of other particle filters. A particularly novel feature of the formulation is the use of a hybrid discretisation of the probability density function (PDF) in physical/phase space. Moreover, we show that, under the assumption that the drifters are uncorrelated, the projection of the Fokker–Planck equation onto the observation space associated with the drifter positions reduces to a set of passive scalar equations. This property allows us to efficiently compute the transitional PDF. To compute the analysis states, we present a grid/particle filter specifically formulated for use with the hybrid representation of our PDF. In common with other particle filters, our filter can suffer from sample impoverishment. To remedy this problem, we extend the Gaussian resampling procedure of Xiong et al. to produce a very efficient filter. This produces a fully functional scheme for Lagrangian data assimilation when combined with our forecasts of the prior. Copyright © 2008 Royal Meteorological Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.