Abstract

Due to its flexibility, scalability, and cost-effectiveness of cloud computing, it has emerged as a popular platform for hosting various applications. However, optimizing workflow scheduling in the cloud is still a challenging problem because of the dynamic nature of cloud resources and the diversity of user requirements. In this context, Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) algorithms have been proposed as effective techniques for improving workflow scheduling in cloud environments. The primary objective of this work is to propose a workflow scheduling algorithm that optimizes the makespan, service cost, and load balance in the cloud. The proposed HGWOCPSO hybrid algorithm employs GWO and Constriction factor based PSO (CPSO) for the workflow optimization. The algorithm is simulated on Workflowsim, where a set of scientific workflows with varying task sizes and inter-task communication requirements are executed on a cloud platform. The simulation results show that the proposed algorithm outperforms existing algorithms in terms of makespan, service cost, and load balance. The employed GWO algorithm mitigates the problem of local optima that is inherent in PSO algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call