Abstract
This paper focuses on the bi-objective orienteering problem (BOOP) that arises in the tourist routes design problem in cities. In this multi-objective extension of the well-known orienteering problem (OP), each point of interest has different profits, which could reflect the multiple preferences of tourists. The aim is to find routes, limited in travel time, that visit some points of interest and provide the maximum of the different total collected profits. In order to determine an effective approximation of the Pareto optimal solutions, we propose a hybrid greedy randomised adaptive search procedure (GRASP) in which a general variable neighbourhood search (GVNS) is used as an improvement phase. To evaluate the performance of the proposed approach compared to the Pareto variable neighbourhood search (P-VNS) technique, we have used the test instances and the results provided by the P-VNS taken from the literature. Computational results reveal that the hybrid GRASP algorithm generates better approximations of Pareto-optimal solutions compared to the P-VNS method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.