Abstract
A genetic algorithm (GA) for feature selection in conjunction with neural network was applied to predict protein structural classes based on single amino acid and all dipeptide composition frequencies. These sequence parameters were encoded as input features for a GA in feature selection procedure and classified with a three-layered neural network to predict protein structural classes. The system was established through optimization of the classification performance of neural network which was used as evaluation function. In this study, self-consistency and jackknife tests on a database containing 498 proteins were used to verify the performance of this hybrid method, and were compared with some of prior works. The adoption of a hybrid model, which encompasses genetic and neural technologies, demonstrated to be a promising approach in the task of protein structural class prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.