Abstract
Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. The focus of this research is on a hybrid method combining two heuristic optimization techniques, genetic algorithms (GA) and particle swarm optimization (PSO), for the global optimization of multimodal functions. Denoted as GA-PSO, this hybrid technique incorporates concepts from GA and PSO and creates individuals in a new generation not only by crossover and mutation operations as found in GA but also by mechanisms of PSO. The results of various experimental studies using a suite of 17 multimodal test functions taken from the literature have demonstrated the superiority of the hybrid GA-PSO approach over the other four search techniques in terms of solution quality and convergence rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.