Abstract

In this study, a channel and feature selection methodology is devised for brain-computer interface (BCI) applications using functional near-infrared spectroscopy (fNIRS). A graph convolutional network (GCN) is employed to select the appropriate and correlated fNIRS channels. Furthermore, in the feature extraction phase, the performance of two filter-based feature selection algorithms, (i) the minimum redundancy maximum relevance (mRMR) and (ii) ReliefF, is investigated. The five most commonly used temporal statistical features (i.e., mean, slope, maximum, skewness, and kurtosis) are used, whereas the conventional support vector machine (SVM) is utilized as a classifier for training and testing. The proposed methodology is validated using an available online dataset of motor imagery (left- and right-hand), mental arithmetic, and baseline tasks. First, the efficacy of the proposed methodology is shown for two-class BCI applications (i.e., left- vs. right-hand motor imagery and mental arithmetic vs. baseline). Second, the proposed framework is applied to four-class BCI applications (i.e., left- vs. right-hand motor imagery vs. mental arithmetic vs. baseline). The results show that the number of appropriate channels and features was significantly reduced, resulting in a significant increase in classification accuracy for both two-class and four-class BCI applications, respectively. Furthermore, both mRMR (i.e., 87.8% for motor imagery, 87.1% for mental arithmetic, and 78.7% for four-class) and ReliefF (i.e., 90.7% for motor imagery, 93.7% for mental arithmetic, and 81.6% for four-class) yielded high average classification accuracy p < 0.05 . However, the results of the ReliefF algorithm are more stable and significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call