Abstract
AbstractFor Paleoclimate data assimilation (PDA), a hybrid gain analog offline ensemble Kalman filter (HGAOEnKF) is proposed. It keeps the benefits of the analog offline ensemble Kalman filter (AOEnKF) that constructs analog ensembles from existing climate simulations with joint information of the proxies. The analog ensembles can provide more accurate prior ensemble mean and “flow‐dependent” error covariances than randomly sampled ensembles. HGAOEnKF further incorporates the benefits of static prior error covariances that better capture large‐scale error correlations and mitigate sampling errors than the sample prior error covariances, through a hybrid gain approach within an ensemble framework. Observing system simulation experiments are conducted for various data assimilation methods, using ensemble simulations from the Community Earth System Model‐Last Millennium Ensemble Project. Results show that using the static prior error covariances estimated from a sufficiently large sample set is beneficial for the traditional offline ensemble Kalman filter (OEnKF) and AOEnKF. HGAOEnKF method is superior to the OEnKF and AOEnKF with and without static prior error covariances, especially for the reconstruction of extreme events. The advantages of HGAOEnKF over OEnKF and AOEnKF with and without static prior error covariances are persistent with varying sample sizes and presence of model errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.