Abstract

In this study we bridge traditional standalone data-driven and knowledge-driven process monitoring approaches by proposing a novel hybrid framework that exploits the advantages of both simultaneously. Namely, we design a process monitoring system based on a data-driven model that includes two different data types: i) “actual” data coming from sensor measurements, and ii) “virtual” data coming from a state estimator, based on a first-principles model of the system under investigation. We test the proposed approach on two simulated case studies: a continuous polycondensation process for the synthesis of poly-ethylene terephthalate, and a fed-batch fermentation process for the manufacturing of penicillin. The hybrid monitoring model shows superior fault detection and diagnosis performances with respect to conventional monitoring techniques, even when the first-principles model is relatively simple and process/model mismatch exists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.