Abstract

Inspection and maintenance are extremely important to maintain safety and long-term usability of bridges. This application requires a robot that is able to maneuver in a complex 3D environment and to stabilize on steel surfaces to perform bolts checking. We propose a novel design and concept of hybrid (integrated walkability and flyability) robot for steel bridge inspection and maintenance. Our proposed design allow the robot to access a 3D structure without being time consuming. In order to stabilize our robot in 3D space, we present a vibration control based on a vibrator to compensate vibration generated from joint actuators when the robot is flying. We present a preliminary experiment on how our robot performs obstacle avoidance along with a simulation of flying performance of a hybrid robot when the vibration was compensated based on LQG control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.