Abstract
Seamless steel tubes often have various categories and specifications, which further require complicated operations in production, especially in the cold treating process (CTP). This paper investigates the scheduling problem using the seamless tube plant of Baoshan Iron and Steel Complex as a study background. By considering the practical production constraints such as sequence-dependent setup times, maintenance schedule, intermediate material buffers, job-machine matches, we formulate the hybrid flowshop scheduling problem with a non-linear mixed integer programming model (NMIP). In addition, our model provides a flexibility to remove the permutation assumption, which is often a limitation in early studies. In order to obtain the solution of the above NMIP problem, a two-stage heuristic algorithm is proposed and it combines a modified genetic algorithm and a local search method. With real production instances, our computation experiments indicate that the proposed algorithm is efficient and it outperforms several other approaches. Industrial implementation also shows that such a scheduling tool brings a cost saving of more than 10% and it substantially reduces the computation time. Our study also illustrates the need of relaxing permutation assumption in such a scheduling problem with complicated operation sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.