Abstract

Abstract: Job shop scheduling has always been one of the most sought out research problems in Combinatorial optimization. Job Shop Scheduling problems (JSSP) are categorized under NP hard problems. In recent years the meta heuristic algorithms have been proved effective to solve hardcore NP problem. Firefly Algorithm is one of such meta heuristic techniques which is nature inspired from firefly characteristic. Its potential can be enhanced further by hybridizing it with other known evolutionary algorithms and thereby getting improved results in less computational time. In this paper we have proposed a new hybrid technique christened as HyFA, by hybridizing Firefly algorithm(FA) with simulated annealing (SA) and Greedy heuristics approach (GHA). The hybrid technique has the advantages of all three algorithms and are combined in such a way that a quicker and better optimal solution is obtained. Our proposed HyFA is coded in Matlab with an objective to minimize the makespan (Cm). The novel hybrid technique is then used to evaluate 1-25 Lawrence problems taken from literature. The results show the proposed technique is more effective not only in getting optimal results but has significantly reduced computational time. Keywords: Scheduling, Optimisation, Job shop scheduling, Meta-heuristics, Firefly, Simulated Annealing, Greedy heuristics Approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.