Abstract

We present in this article a very adapted finite volume numerical scheme for transport type‐equation. The scheme is an hybrid one combining an anti‐dissipative method with down‐winding approach for the flux (Després and Lagoutière, C R Acad Sci Paris Sér I Math 328(10) (1999), 939–944; Goudon, Lagoutière, and Tine, Math Method Appl Sci 23(7) (2013), 1177–1215) and an high accurate method as the WENO5 one (Jiang and Shu, J Comput Phys 126 (1996), 202–228). The main goal is to construct a scheme able to capture in exact way the numerical solution of transport type‐equation without artifact like numerical diffusion or without “stairs” like oscillations and this for any regular or discontinuous initial distribution. This kind of numerical hybrid scheme is very suitable when properties on the long term asymptotic behavior of the solution are of central importance in the modeling what is often the case in context of population dynamics where the final distribution of the considered population and its mass preservation relation are required for prediction. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1114–1142, 2017

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.