Abstract

The paper develops a hybrid method for solving a system of advection–diffusion equations in a bulk domain coupled to advection–diffusion equations on an embedded surface. A monotone nonlinear finite volume method for equations posed in the bulk is combined with a trace finite element method for equations posed on the surface. In our approach, the surface is not fitted by the mesh and is allowed to cut through the background mesh in an arbitrary way. Moreover, a triangulation of the surface into regular shaped elements is not required. The background mesh is an octree grid with cubic cells. As an example of an application, we consider the modeling of contaminant transport in fractured porous media. One standard model leads to a coupled system of advection–diffusion equations in a bulk (matrix) and along a surface (fracture). A series of numerical experiments with both steady and unsteady problems and different embedded geometries illustrate the numerical properties of the hybrid approach. The method demonstrates great flexibility in handling curvilinear or branching lower dimensional embedded structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.