Abstract

This paper describes an extension to a computer simulation of solid fracture. In the original model, rigid elements are assembled into a simulated solid by "gluing" the elements together with compliant boundaries which fracture when the tensile strength of the glued joints is exceeded. The current extension applies portions of the finite element technique to allow changes in the shapes of elements. This is implemented at the element level and no global stiffness matrix is assembled; instead, the elements interact across the same compliant boundaries used in the rigid element simulation. As a result, the simulated material can conform to any desired shape and thus can handle large elastic and plastic deformation. This model is intended to study the propagation of multitudinous cracks through simulated solids to aid the understanding of problems such as the impact-induced fragmentation of particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.