Abstract

A conservative coupled finite difference–boundary element computational procedure for the simulation of turbulent magnetohydrodynamic flow in a straight rectangular duct at finite magnetic Reynolds number is presented. The flow is assumed to be periodic in the streamwise direction and is driven by a mean pressure gradient. The duct walls are considered to be electrically insulated. The co-evolution of the velocity and magnetic fields as described respectively by the Navier–Stokes and the magnetic induction equations, together with the coupling of the magnetic field between the conducting domain and the non-conducting exterior, is solved using the magnetic field formulation. The aim is to simulate localized magnetic fields interacting with turbulent duct flow. Detailed verification of the implementation of the numerical scheme is conducted in the limiting case of low magnetic Reynolds number by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. The rigorous procedure with non-local magnetic boundary conditions is compared with simplified pseudo-vacuum boundary conditions and the differences are quantified. Our first direct numerical simulations of turbulent Hartmann duct flow at moderate magnetic Reynolds numbers and a low flow Reynolds number show significant differences in the duct flow turbulence, even at low interaction level between the flow and magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call