Abstract

Accurate medium- and long-term power load forecasting is of great significance for the scientific planning and safe operation of power systems. Monthly power load has multiscale time series correlation and seasonality. The existing models face the problems of insufficient feature extraction and a large volume of prediction models constructed according to seasons. Therefore, a hybrid feature pyramid CNN-LSTM model with seasonal inflection month correction for medium- and long-term power load forecasting is proposed. The model is constructed based on linear and nonlinear combination forecasting. With the aim to address the insufficient extraction of multiscale temporal correlation in load, a time series feature pyramid structure based on causal dilated convolution is proposed, and the accuracy of the model is improved by feature extraction and fusion of different scales. For the problem that the model volume of seasonal prediction is too large, a seasonal inflection monthly load correction strategy is proposed to construct a unified model to predict and correct the monthly load of the seasonal change inflection point, so as to improve the model’s ability to deal with seasonality. The model proposed in this paper is verified on the actual power data in Shaoxing City.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call