Abstract

The paper uses a hydraulic performance analysis method to support the design of stock production multistage pumps. The method relies on a hybrid numerical–experimental approach conceived as a trade-off between accuracy and cost. It is based on CFD analyses incorporating experimental data of leakage flows across the sealing elements to obtain accurate predictions without the need of inclusion in the CFD model of small-scale features, which strongly increase the model complexity and computational effort. The aim of the paper is to present and validate this method. To this end, a 6-stage vertical pump manufactured by the stainless-steel metal-sheets-forming technique was considered as the benchmark. A series of experimental tests were performed to hydraulically characterize the impeller and return-channels-sealing elements by means of an “ad hoc” designed test rig. The characteristic curves of the sealing elements were embedded on the CFD model implemented in accordance with the strategy proposed in a previous authors’ work to obtain satisfactory predictions of multistage pumps’ hydraulic performance with minimum computational effort with the analytical correction of single-stage single-channel computations to account for the interaction between adjacent stages. To further explore the capabilities of the hybrid model, axial thrust measurements were performed by means of another “ad hoc” designed experimental apparatus. The application of the method to the benchmark pump shows that the hybrid model predicts the static head and efficiency with an error value lower than 1% at its best efficiency operation, and estimates the axial thrust with a 5% average error in the operating range from approximately 70% to 120% of the best efficiency duty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call