Abstract

There are several studies on hybrid multi-operator recombination methods, while few works have been proposed in the area of combining different fitness assignment in a framework. On the other hand, it is known that fitness assignment has a marked impact on the performance of evolutionary multiobjective optimization algorithm (EMOA). In this paper, a hybrid EMOA is proposed, which divides the population into several smaller subpopulations according to their distribution in the objective space. Each subpopulation is evolved by an individual EMOA, and a hybrid performance measure estimates the performance of these EMOAs. We focus on the fitness assignment and assume that all EMOAs used in the subpopulations adopt the same recombination operator. To evaluate performance of the proposed algorithm, we compare it with MOEA/D-M2M, MOE-A/D, SMS-EMOA and NSGA-II on 16 test instances. Experimental results show that the proposed algorithm performs better than or similar to those compared EMOAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.