Abstract
This paper presents a Hybrid Evolutionary Algorithm (HEA) to solve the Job Shop Scheduling Problem (JSP). Incorporating a tabu search procedure into the framework of an evolutionary algorithm, the HEA embraces several distinguishing features such as a longest common sequence based recombination operator and a similarity-and-quality based replacement criterion for population updating. The HEA is able to easily generate the best-known solutions for 90 % of the tested difficult instances widely used in the literature, demonstrating its efficacy in terms of both solution quality and computational efficiency. In particular, the HEA identifies a better upper bound for two of these difficult instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.