Abstract
Abstract A hybrid Eulerian–Lagrangian wave model is presented that solves the spectral energy balance equation for surface gravity waves in varying depth. The energy of each spectral component is advected along (Lagrangian) ray trajectories. The source terms in the energy balance equation (e.g., interactions between wave components and nonconservative processes) are computed on a fixed Eulerian grid and interpolated onto the ray trajectories. The source terms are integrated in time along the rays. This integration is performed in parallel over the entire model domain. The main advantage of this new model, named CREST (Coupled Rays with Eulerian Source Terms), is that refraction of waves by subgrid-scale depth variations is evaluated accurately using precomputed rays, and thus the model can be applied with relatively coarse source term grids to large coastal areas. Hindcasts of swell evolution across the North Carolina continental shelf are presented for a source term restricted to energy dissipation in th...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.