Abstract

For entropy-coded MPEG-2 video frames, a transmission error will not only affect the underlying codeword but also may affect subsequent codewords, resulting in a great degradation of the received video frames. In this study, a hybrid error concealment scheme for MPEG-2 video transmission is proposed. The objective is to recover high-quality MPEG-2 video frames from the corresponding corrupted video frames, without increasing the transmission bit rate. In this study, transmission errors or equivalently corrupted/lost video packets in MPEG-2 video frames are detected and located by the error detection scheme proposed by Shyu and Leou [IEEE Trans. Circuits Syst. Video Technol. 10 (4) (2000) 659], and then the corrupted blocks are concealed by the proposed hybrid error concealment scheme. Based on the fitness function for evaluating the candidate concealed blocks of a corrupted block, a corrupted block in an intra-coded I frame is concealed by either the spatial error concealment algorithm in H.264 or the proposed fast best neighborhood matching (BNM) algorithm. A corrupted block in an inter-coded P or B frame is concealed by the proposed fast motion-compensated BNM algorithm. Based on the simulation results obtained in this study, the proposed scheme can recover high-quality MPEG-2 video frames from the corresponding corrupted video frames up to a packet loss rate of 20%. The performance of the proposed scheme is better than those of four existing approaches for comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.