Abstract

This paper focuses on a problem of wind speed estimation in wind farms by proposing an ensemble of regressors in which the output of four different systems (Neural Networks (NNs), Suppor Vector Regressors (SVRs) and Gaussian Processes (GPRs)) will be the input of a final prediction system (An Extreme Learning Machine (ELM) in this case). Moreover, we propose to use variables from atmospheric reanalysis data as predictive inputs for the systems, which gives us the possibility of hybridizing numerical weather models with ML techniques for wind speed prediction in real systems. The experimental evaluation of the proposed system in real data from a wind farm in Spain has been carried out, with the subsequent discussion about the performance of the different ML regressors and the ensemble method tested in this wind speed prediction problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.