Abstract

BackgroundThe proper intake of nutrients is essential to the growth and maturation of youngsters. In sub-Saharan Africa, 1 in 7 children dies before age 5 y, and more than a third of these deaths are attributed to malnutrition. The main purpose of this study was to develop a majority voting–based hybrid ensemble (MVBHE) learning model to accelerate the prediction accuracy of malnutrition data of under-five children in sub-Saharan Africa. MethodsThis study used available under-five nutritional secondary data from the Demographic and Health Surveys performed in sub-Saharan African countries. The research used bagging, boosting, and voting algorithms, such as random forest, decision tree, eXtreme Gradient Boosting, and k-nearest neighbors machine learning methods, to generate the MVBHE model. ResultsWe evaluated the model performances in contrast to each other using different measures, including accuracy, precision, recall, and the F1 score. The results of the experiment showed that the MVBHE model (96%) was better at predicting malnutrition than the random forest (81%), decision tree (60%), eXtreme Gradient Boosting (79%), and k-nearest neighbors (74%). ConclusionsThe random forest algorithm demonstrated the highest prediction accuracy (81%) compared with the decision tree, eXtreme Gradient Boosting, and k-nearest neighbors algorithms. The accuracy was then enhanced to 96% using the MVBHE model. The MVBHE model is recommended by the present study as the best way to predict malnutrition in under-five children.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.