Abstract
The opportunities related to the adoption of synthetic gaseous fuels derived from solid biomass are limited by the issues caused by the peculiarities of the syngas. The aim of this paper is to analyze several possible layouts of hybrid energy systems, in which the main thermal source is the organic fraction of municipal solid wastes. The case of a small community of about 1000 persons is analyzed in this paper. The examined layouts coupled an externally fired micro gas turbine with a waste heat recovery system based on both an Organic Rankine Cycle and supercritical CO2 gas turbines. A thermodynamic analysis has been carried out through the use of the commercial software Thermoflex 31, considering the losses of each component and the non-ideal behavior of the fluids. The results of the numerical analysis highlight that the introduction of a waste heat recovery system leads to an increase of at least 16% in the available net power, while a cascade hybrid energy grid can lead to a power enhancement of about 29%, with a considerable increase also in the energetic and exergetic global efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.