Abstract

To solve the problems of large fluctuation of photovoltaic output power affecting the safe operation of the power grid, a hybrid energy storage capacity configuration strategy based on the improved Harris hawks optimization algorithm optimizing variational mode decomposition (IHHO-VMD) is proposed. In this strategy, the improved Harris hawk optimization algorithm is used to adaptively select k and α in VMD parameters and decompose the photovoltaic output power and distinguish between correlated and uncorrelated modes. Similarly, the moving average method (MA) is used to extract the continuous component signal in the uncorrelated mode, and it is reconstructed with the related mode as the grid-connected power that meets the national standard. The hybrid energy storage system (HESS) is used to stabilize the fluctuation component signal. The minimum annual configuration cost of the energy storage system is established as the objective function. The simulation results show that the improved algorithm reduces the cost of the hybrid energy storage system by 6.15% compared with the original algorithm, suppresses the power fluctuation, and improves the economy and stability of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.