Abstract

PurposeFabricating functionally graded scaffolds to mimic the complex spatial distributions of the composition, micro-structure and functionality of native tissues will be one of the key objectives for future tissue engineering research. This study aims to create a scaffold to mimic functionally-graded tissue using a hybrid process, which incorporated electrospun polycaprolactone (PCL) and electrosprayed hydroxyapatite (HA) in a simple pathway.Design/methodology/approachThe PCL and HA were dispensed simultaneously from different positions to form a layer on a rotational mandrel, and a gradient construct was achieved by adjusting dispensing rates of both materials.FindingsThe morphology of scaffolds changed gradually from one layer to another layer with the change of the dispensing conditions of the two materials. The elemental distribution analysis revealed that C/Ca ratio linearly increased with certain dispensing rate ratio of PCL:HA. In addition, the thickness, mechanical properties (i.e. ultimate tensile stress and Young’s modulus), surface roughness and water contact angle of each layer changed accordingly with the variation of dispensing rate of PCL and HA, and the diameter distributions of PCL fibres and HA particles did not vary significantly.Originality/valueThis study showed the hybrid process has the potential to be used in fabrication of scaffold with functionally graded structure for tissue engineering applications, especially for mimicking the nature of the native 3D tendon–bone interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.