Abstract

Increasing use of computerized ECG processing systems requires effective electrocardiogram (ECG) data compression techniques which aim to enlarge storage capacity and improve data transmission over phone and internet lines. This paper presents a compression technique for ECG signals using the singular value decomposition (SVD) combined with discrete wavelet transform (DWT). The central idea is to transform the ECG signal to a rectangular matrix, compute the SVD, and then discard small singular values of the matrix. The resulting compressed matrix is wavelet transformed, thresholded and coded to increase the compression ratio. The number of singular values and the threshold level adopted are based on the percentage root mean square difference (PRD) and the compression ratio required. The technique has been tested on ECG signals obtained from MIT-BIH arrhythmia database. The results showed that data reduction with high signal fidelity can thus be achieved with average data compression ratio of 25.2:1 and average PRD of 3.14. Comparison between the obtained results and recently published results show that the proposed technique gives better performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call