Abstract

Dynamic Load Balancing (DLB) is sine qua non in modern distributed systems to ensure the efficient utilization of computing resources therein. This paper proposes a novel framework for hybrid dynamic load balancing. Its framework uses a Genetic Algorithms (GA) based supernode selection approach within. The GA-based approach is useful in choosing optimally loaded nodes as the supernodes directly from data set, thereby essentially improving the speed of load balancing process. Applying the proposed GA-based approach, this work analyzes the performance of hybrid DLB algorithm under different system states such as lightly loaded, moderately loaded, and highly loaded. The performance is measured with respect to three parameters: average response time, average round trip time, and average completion time of the users. Further, it also evaluates the performance of hybrid algorithm utilizing OnLine Transaction Processing (OLTP) benchmark and Sparse Matrix Vector Multiplication (SPMV) benchmark applications to analyze its adaptability to I/O-intensive, memory-intensive, or/and CPU-intensive applications. The experimental results show that the hybrid algorithm significantly improves the performance under different system states and under a wide range of workloads compared to traditional decentralized algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.