Abstract
This study proposes a hybrid dynamic economics emissions dispatch (HDEED) model for a distributed power system containing thermal generating units, wind farms and photovoltaic plants. The construction of novel distributed power system has been a significant means of tackling the energy crisis. (1) the relationship between each generation unit of the power generation system is analyzed, as well as the power balance constraint, transmission loss constraint, output capacity of each generation unit and slope constraint of the power system; and (2) the operating cost objective function is established with the objective of minimizing unit's generation cost, pollutant emission objective function, and the satisfaction weight coefficient. A novel and improved COOT optimization algorithm is presented to enhance convergence performance and solution speed in solving the problem by introducing a chaotic initialization strategy. A mutation strategy and an improved chain movement of the model solution are verified. The result shows that for the HDEED problem, the ICOOT algorithm reduces the operating cost targets by 1.28%, 6.99% and 7.44% and the pollutant emission targets by 2.98%, 5.46% and 10.88% compared to other algorithms. The developed model provides an effective solution for improving the operational stability, economy and cleanliness of system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.