Abstract
Growing energy demand and increasing environmental challenges underscore the importance of precise forecasts for photovoltaic (PV) operations in renewable energy generation systems. At this stage, it is mainstream to combine both temporal and spatial factors to forecast PV power generation. However, there are fewer studies that consider factors at very large spatial scales. This paper proposes Hybrid Dual Stream ProbSparse Self-Attention Network (HDSPAN), a novel spatial–temporal photovoltaic power forecasting network architecture that can solve the above limitations. The model implements an encoder–decoder approach that extracts the required spatial–temporal information through a dual stream distilling mechanism. In addition, the ProbSparse self-attention mechanism is employed to improve model efficiency and reduce repetitive and redundant information processing. The hyperparameters are optimized using Tree-structured Patzen estimator to improve forecasting outcomes. This paper demonstrates the effectiveness of spatial–temporal PV forecasting by using ERA5 reanalyzed PV data as a case study. Our results show that the HDSPAN model achieves a 10% higher forecasting accuracy compared to the baseline models, significantly advancing PV power forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.