Abstract

Distribution feeder long-term load forecast (LTLF) is a critical task many electric utility companies perform on an annual basis. The goal of this task is to forecast the annual load of distribution feeders. The previous top-down and bottom-up LTLF methods are unable to incorporate different levels of information. This paper proposes a hybrid modeling method using sequence prediction for this classic and important task. The proposed method can seamlessly integrate top-down, bottom-up and sequential information hidden in multi-year data. Two advanced sequence prediction models Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are investigated in this paper. They successfully solve the vanishing and exploding gradient problems a standard recurrent neural network has. This paper firstly explains the theories of LSTM and GRU networks and then discusses the steps of feature selection, feature engineering and model implementation in detail. In the end, a real-world application example for a large urban grid in West Canada is provided. LSTM and GRU networks under different sequential configurations and traditional models including bottom-up, ARIMA and feed-forward neural network are all implemented and compared in detail. The proposed method demonstrates superior performance and great practicality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.