Abstract

We discuss the mathematical modeling and numerical discretization of transport problems on one-dimensional networks. Suitable coupling conditions are derived that guarantee conservation of mass across network junctions and dissipation of a mathematical energy which allows us to prove existence of unique solutions. We then consider the space discretization by a hybrid discontinuous Galerkin method which provides a suitable upwind mechanism to handle the transport problem and allows to incorporate the coupling conditions in a natural manner. In addition, the method inherits mass conservation and stability of the continuous problem. Order optimal convergence rates are established and illustrated by numerical tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.