Abstract
We study the numerical approximation of singularly perturbed convection-diffusion problems on one-dimensional pipe networks. In the vanishing diffusion limit, the number and type of boundary conditions and coupling conditions at network junctions change, which gives rise to singular layers at the outflow boundaries of the pipes. A hybrid discontinuous Galerkin method is proposed, which provides a natural upwind mechanism for the convection-dominated case. Moreover, the method provides a viable approximation for the limiting pure transport problem. A detailed analysis of the singularities of the solution and the discretization error is presented, and an adaptive strategy is proposed, leading to order optimal error estimates that hold uniformly in the singular perturbation limit. The theoretical results are confirmed by numerical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.