Abstract

The vibration signal is easily interfered by noise due to the influence of environment and other factors, which can lead to the poor adaptability, low accuracy of remaining useful life (RUL) prediction, and other problems. To solve this problem, this paper proposes a novel RUL prediction method, which is based on multiscale stacking deep residual shrinkage network (MSDRSN). MSDRSN combines the ability of stacking in improving prediction accuracy and the advantages of deep residual shrinkage network (DRSN) in denoising. First, cumulative sum (CUSUM) from statistics is used to divide the full life cycle of the rolling bearings and discover the points of failure. Second, stacking is used for feature learning on the raw data, multiple convolutional kernels of different scales are selected as base-learners, and fully connected neural networks are selected as meta-learners for feature fusion and learning. Then, DRSN is used to do prediction, and the acquired results are fitted with Savitzky–Golay (SG) smoothing. Finally, the effectiveness of the proposed method is proved by the IEEE PHM 2012 data challenge dataset. Compared with the multiscale convolutional neural network with fully connected layer (MSCNN-FC) and the bidirectional long short-term memory (BiLSTM) for RUL prediction under the noise. Using the proposed method, the mean absolute error (MSE) of the best result is 0.002 and the mean square error (MSE) is 0.014; meanwhile, the coefficient of determination (R2) of the best prediction result can reach 97.6%. It is also compared with other machine learning methods, and all the results prove the accuracy and effectiveness of the proposed method for RUL prediction applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.