Abstract
Diamond cutting-tool wear has a direct impact on the processing accuracy of the machined surface in ultra-precision diamond cutting. It is difficult to monitor the tool’s condition because of the slight wear amount. This paper proposed a hybrid deep learning model for tool wear state prediction in ultra-precision diamond cutting. The cutting force was accurately estimated and the wear state of the diamond tool was predicted by using the hybrid deep learning model with the motion displacement, velocity, and other signals in the machining process. By carrying out machining experiments, this method can classify diamond-tool wear condition with an accuracy of more than 85%. Meanwhile, the effectiveness of the proposed method was verified by comparing it with a variety of machine learning models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.