Abstract

BackgroundMicrobes have been shown to play a crucial role in various ecosystems. Many human diseases have been proved to be associated with bacteria, so it is essential to extract the interaction between bacteria for medical research and application. At the same time, many bacterial interactions with certain experimental evidences have been reported in biomedical literature. Integrating this knowledge into a database or knowledge graph could accelerate the progress of biomedical research. A crucial and necessary step in interaction extraction (IE) is named entity recognition (NER). However, due to the specificity of bacterial naming, there are still challenges in bacterial named entity recognition.ResultsIn this paper, we propose a novel method for bacterial named entity recognition, which integrates domain features into a deep learning framework combining bidirectional long short-term memory network and convolutional neural network. When domain features are not added, F1-measure of the model achieves 89.14%. After part-of-speech (POS) features and dictionary features are added, F1-measure of the model achieves 89.7%. Hence, our model achieves an advanced performance in bacterial NER with the domain features.ConclusionsWe propose an efficient method for bacterial named entity recognition which combines domain features and deep learning models. Compared with the previous methods, the effect of our model has been improved. At the same time, the process of complex manual extraction and feature design are significantly reduced.

Highlights

  • Microbes have been shown to play a crucial role in various ecosystems

  • Lim [7] obtained the data in the same way and put forward an automated microbial interaction extraction method based on support vector machine (SVM)

  • Decoding layer For the task of sequence labeling, we should consider the dependency problem between words, because the neighboring words of the current word contribute to the labeling of the word, so we introduce the conditional random fields (CRF) [38] on the top of encoding layer

Read more

Summary

Results

We propose a novel method for bacterial named entity recognition, which integrates domain features into a deep learning framework combining bidirectional long short-term memory network and convolutional neural network. When domain features are not added, F1-measure of the model achieves 89.14%. After part-of-speech (POS) features and dictionary features are added, F1-measure of the model achieves 89.7%. Our model achieves an advanced performance in bacterial NER with the domain features

Conclusions
Background
Materials and methods
Results and discussion
Conclusion and outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.