Abstract

Early detection and proper treatment of epilepsy is essential and meaningful to those who suffer from this disease. The adoption of deep learning (DL) techniques for automated epileptic seizure detection using electroencephalography (EEG) signals has shown great potential in making the most appropriate and fast medical decisions. However, DL algorithms have high computational complexity and suffer low accuracy with imbalanced medical data in multi seizure-classification task. Motivated from the aforementioned challenges, we present a simple and effective hybrid DL approach for epileptic seizure detection in EEG signals. Specifically, first we use a K-means Synthetic minority oversampling technique (SMOTE) to balance the sampling data. Second, we integrate a 1D Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) network based on Truncated Backpropagation Through Time (TBPTT) to efficiently extract spatial and temporal sequence information while reducing computational complexity. Finally, the proposed DL architecture uses softmax and sigmoid classifiers at the classification layer to perform multi and binary seizure-classification tasks. In addition, the 10-fold cross-validation technique is performed to show the significance of the proposed DL approach. Experimental results using the publicly available UCI epileptic seizure recognition data set shows better performance in terms of precision, sensitivity, specificity, and F1-score over some baseline DL algorithms and recent state-of-the-art techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.