Abstract

AbstractThe learning strategy employed in neural networks offers a good performance even in the situations where a model is presented with incomplete and noisy data. However, neural networks are known as ‘black boxes’ as how the outputs are produced is not clear. In this study, a hybrid learning strategy, namely RDC-ANNE (Rules Driven by Consistency in Artificial Neural Networks Ensemble) is proposed. This paper looks at the use of RDC-ANNE in the graft outcome prediction domain as a prototypical medical application. At first, for a better generalization, a committee of binary neural networks is trained. Then, a partial C4.5 decision tree is built from a specifically selected dataset, generated based on the graft data used to test the trained neural networks ensemble. Finally the most appropriate leaf in every path is converted into an understandable rule. In this approach, for the rule generation process, we enforced the model to mainly consider the patterns that their class labels were consistently causing agreement across the neural network classifiers. Experimental results show that the RDC-ANNE method is able to extract partial rules from an ensemble model and reveal the important embedded information of a trained neural network ensemble.KeywordsArtificial Neural Network ModelClass LabelEnsemble ModelNeural Network EnsembleArtificial Neural Network ClassifierThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.