Abstract
Global optimization algorithms have shown impressive performance in data-association-based multi-object tracking, but handling online data remains a difficult hurdle to overcome. In this paper, we present a hybrid data association framework with a min-cost multi-commodity network flow for robust online multi-object tracking. We build local target-specific models interleaved with global optimization of the optimal data association over multiple video frames. More specifically, in the min-cost multi-commodity network flow, the target-specific similarities are online learned to enforce the local consistency for reducing the complexity of the global data association. Meanwhile, the global data association taking multiple video frames into account alleviates irrecoverable errors caused by the local data association between adjacent frames. To ensure the efficiency of online tracking, we give an efficient near-optimal solution to the proposed min-cost multi-commodity flow problem, and provide the empirical proof of its sub-optimality. The comprehensive experiments on real data demonstrate the superior tracking performance of our approach in various challenging situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.