Abstract

Constrained optimization problems are very important as they are encountered in many science and engineering applications. As a novel evolutionary computation technique, cuckoo search (CS) algorithm has attracted much attention and wide applications, owing to its easy implementation and quick convergence. A hybrid cuckoo pattern search algorithm (HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems. This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method. Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness, efficiency and robustness of the proposed HCPS algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.