Abstract

A multiscale multiphysics model has been developed coupling nonlinear structural behaviour and the corrosion kinetics. This study develops a hybrid mechano-electrochemical corrosion model using finite element method to evaluate long-term topography evolution on carbon steel stiffened plates for marine applications. A parametric study is performed on a stiffened plate (1.5 m × 0.95 m) with different localised corrosion locations (0.75 m × 0.045 m) at different load levels. Stress-based anodic and cathodic surfaces are defined using a level-set function to solve the transport equation, facilitated by the moving boundary technique. Key model insights show broad-pitted corrosion features with benching, closely resembling those found in actual ship inspections and/or surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.