Abstract

In digital images, the most common forgery is copy-move image forgery in which some region(s) of an image is replicated within the image. The copy-move forgery detection (CMFD) techniques fall under two categories; keypoint-based and block-based. The keypoint-based techniques perform well under rotation and scaling but show very poor performance in the case of smooth images. On the contrary, the block-based techniques perform better in smooth images but are comparatively more time demanding. In this paper, a hybrid technique has been proposed by combining the block-based technique using Fourier-Mellin Transform (FMT) and a keypoint-based technique using Scale Invariant Feature Transform (SIFT). In this technique, the input image to be checked for forgery is first divided into texture and smooth regions. Then the keypoints are extracted from the texture part of the image using the SIFT descriptor, and the FMT is applied on the smooth part of the image. Extracted features are then matched to detect the duplicated regions of the image. The experimental results illustrate that the proposed technique performs better in comparison to other state-of-the-art CMFD techniques under various geometric transformations and post-processing operations in reasonable time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.