Abstract

This paper deals with the design of resilient Cooperative Adaptive Cruise Control (CACC) for homogeneous vehicle platoons in which communication is vulnerable to Denial-of-Service (DOS) attacks. We consider DOS attacks as consecutive packet dropouts. We present a controller tuning procedure based on linear matrix inequalities (LMI) that maximizes the resiliency to DOS attacks, while guaranteeing performance and string stability. The design procedure returns controller gains and gives a lower bound on the maximum allowable number of successive packet dropouts. A numerical example is employed to illustrate the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call